Аннотация:
Пусть $S$ – простая или замкнутая кривая М. А. Лаврентьева в комплексной плоскости, $0<p<1$, причем $1/p\notin\mathbb N$ и $s\in\mathbb N$. Показано, что для любой рациональной функции $r$ степени $n$, для которой $|r|^p$ суммируема на $S$, выполняется неравенство
$$
\biggl(\int_S|r^{(s)}(z)|^\sigma|dz|\biggr)^{1/\sigma}\leq cn^s\biggl(\int_S|r(z)|^p|dz|\biggr)^{1/p},
$$
где $1/\sigma=s+1/p$, а $c>0$ зависит лишь от $S$, $p$, $s$.
Ранее (1995 г.) этот результат был получен автором и Г. Шталем для отрезка и окружности. Данное неравенство применяется для доказательства обратной теоремы рациональной аппроксимации в пространстве В. И. Смирнова $E_p$. В работах рассматриваются также другие задачи рациональной аппроксимации в пространствах $L_p$ и $E_p$.
Ключевые слова:рациональные функции, неравенства типа Бернштейна, пространства Смирнова.