RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2005, том 17, выпуск 3, страницы 160–183 (Mi aa674)

Статьи

Approximation by analytic operator functions. Factorizations and very badly approximable functions

V. V. Pellera, S. R. Treilb

a Department of Mathematics, Michigan State University
b Department of Mathematics, Brown University

Аннотация: This is a continuation of our earlier paper [РТЗ]. We consider here operatorvalued functions (or infinite matrix functions) on the unit circle $\mathbb T$ and study the problem of approximation by bounded analytic operator functions. We discuss thematic and canonical factorizations of operator functions and study badly approximable and very badly approximable operator functions.
We obtain algebraic and geometric characterizations of badly approximable and very badly approximable operator functions. Note that there is an important difference between the case of finite matrix functions and the case of operator functions. Our criteria for a function to be very badly approximable in the case of finite matrix functions also guarantee that the zero function is the only superoptimal approximant. However in the case of operator functions this is not true.

Поступила в редакцию: 30.11.2004

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2006, 17:3, 493–510

Реферативные базы данных:


© МИАН, 2024