Аннотация:
В $L_2(\mathbb R^d)$ рассматриваются векторные периодические дифференциальные операторы
(ДО) $\mathcal A$, допускающие факторизацию $\mathcal A\chi^*\chi$, где $\chi$ – однородный ДО
первого порядка. Такой вид имеют многие операторы математической физики. Пороговыми при $\lambda=0$ называются эффекты, зависящие лишь от грубого поведения спектрального разложения $\mathcal A$ в малой окрестности нуля. Пример порогового эффекта – поведение ДО в пределе малого периода (эффект усреднения). Другой пример связан с отрицательным дискретным спектром
оператора $\mathcal A-\alpha V$, $\alpha>0$, где $V(\mathbf x)\geq0$ и $V(\mathbf x)\to0$ при $|\mathbf x|\to\infty$. В этих задачах возникают “эффективные характеристики” – осредненная среда, эффективные масса и гамильтониан и т.п. Предлагается общий подход к этим вопросам, основанный на спектральной теории возмущений для оператор-функций, допускающих аналитическую факторизацию. Значительная часть построений ведется в абстрактных терминах. В применениях основное внимание уделяется усреднению ДО.