RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2002, том 14, выпуск 2, страницы 56–91 (Mi aa841)

Эта публикация цитируется в 2 статьях

Статьи

The complex shade of a real space and its applications

T. Ekholm

Department of Mathematics, Uppsala University, Uppsala, Sweden

Аннотация: A natural oriented $(2k+2)$-chain in $\mathbb{C}P^{2k+1}$ with boundary twice $\mathbb{R}P^{2k+1}$, the complex shade of $\mathbb{R}P^{2k+1}$, is constructed. The intersection numbers with the shade make it possible to introduce a new invariant, the shade number, of a $k$-dimensional subvariety $W$ with a normal vector field $n$ along the real set. If $W$ is an even-dimensional real variety, then the shade number and the Euler number of the complement of $n$ in the real normal bundle of its real part agree. If $W$ is an odd-dimensional orientable real variety, a linear combination of the shade number and the wrapping number (self-linking number) of its real part does not depend on $n$ and equals the encomplexed writhe as defined by Viro [V]. The shade numbers of varieties without real points and the encomplexed writhes of odd-dimensional real varieties are, in a sense, Vassiliev invariants of degree 1.
The complex shades of odd-dimensional spheres are constructed. The shade numbers of real subvarieties in spheres have properties similar to those of their projective counterparts.

Ключевые слова: algebraic variety, complexification, real algebraic knot, rigid isotopy, isotopy, linking number.

Поступила в редакцию: 19.09.2001

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2003, 14:2, 223–250

Реферативные базы данных:


© МИАН, 2024