Эта публикация цитируется в
6 статьях
Статьи
Toeplitz operators on weighted Hardy spaces
J. Esterle Laboratoire de Mathématiques Pures, Université Bordeaux 1, Talence, France
Аннотация:
Let
$\sigma$ be a weight on
$\mathbb Z^+$ such that the usual shift
$S\colon(u_n)_{n\geq0}\mapsto(u_{n-1})_{n\geq0}$ (with the convention
$u_{-1}=0$) and the backward shift
$T\colon(u_n)_{n\geq0}\mapsto(u_{n+1})_{n\geq0}$ are bounded on the weighted Hilbert space
$l_\sigma^2(\mathbb Z^+):=\{u=(u_n)_{n\geq0}\mid\sum_{n\geq0}|u_n|^2\sigma^2(n)<+\infty\}$.
Set
$\sigma_*(n)=1/\sigma(-n)$ for
$n\leq0$, and set $l^2_{\sigma_*}(\mathbb Z^-):=\{v=(v_n)_{n\leq0}\mid\sum_{n\leq0}|u_n|^2\sigma^2_*(n)<+\infty\}$. The existence of pairs
$(u,v)\in l_\sigma^2(\mathbb Z^+)\times l^2_{\sigma_*}(\mathbb Z^-)$ with
$u\ne0$,
$v\ne0$ and
$u\ast v=0$ is discussed. Such pairs will be called
nontrivial solutions of the equation $u\ast v=0$.
A bounded operator
$U$ on
$l^2_\sigma(\mathbb Z^+)$ is called a
Toeplitz operator if
$TUS=U$. The map
$(u,v)\mapsto u\ast v$ is a continuous bilinear map from
$l_\sigma^2(\mathbb Z^+)\times l^2_{\sigma_*}(\mathbb Z^-)$ into a Banach space that can be identified with the predual of the space
$\mathcal T_\sigma$ of Toeplitz operators on
$l^2_\sigma(\mathbb Z^+)$. These Toeplitz operators, their “Fourier transforms”, and their symbols are discussed in
$\S\,2,3$. In
$\S\,4$, by using the “Brown approximation method”, many examples of weights
$\sigma$ on
$\mathbb Z^+$ are given for which the equation
$u\ast v=0$ has nontrivial solutions. In particular, it is shown that there exist nondecreasing weights on
$\mathbb Z^+$ of arbitrarily slow growth such that
$\rho(S)=\rho(T)=1$ and
the equation
$u\ast v=0$ has many nontrivial solutions. This result is somewhat surprising because, surely, the equation
$u\ast v$ has only trivial solutions on
$l^2(\mathbb Z^+)\times l^2(\mathbb Z^-)$.
Ключевые слова:
Toeplitz operator, symbol, Toeplitz matrix, weighted space of sequences, weighted Hardy space, convolution equations, Brown approximation method. Поступила в редакцию: 25.08.2001
Язык публикации: английский