Аннотация:
The author studies the ${\bf Z_{p^{\infty}}}G$-module $A$ such that $\bf Z_{p^{\infty}}$ is a ring of $p$-adic integers, a group $G$ is locally soluble, the quotient module $A/C_{A}(G)$ is not Artinian $\bf Z_{p^{\infty}}$-module, and the system of all subgroups $H \leq G$ for which the quotient\linebreak modules $A/C_{A}(H)$ are not Artinian $\bf Z_{p^{\infty}}$-modules satisfies the minimal condition on subgroups. It is proved that the group $G$ under consideration is soluble and some its properties are obtained.