RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2011, том 12, выпуск 2, страницы 85–93 (Mi adm132)

RESEARCH ARTICLE

Fully invariant subgroups of an infinitely iterated wreath product

Yuriy Yu. Leshchenko

Department of Algebra and Mathematical Analysis, Bogdan Khmelnitsky National University, 81, Shevchenko blvd., Cherkasy, 18031, Ukraine

Аннотация: The article deals with the infinitely iterated wreath product of cyclic groups $C_p$ of prime order $p$. We consider a generalized infinite wreath product as a direct limit of a sequence of finite $n$th wreath powers of $C_p$ with certain embeddings and use its tableau representation. The main result are the statements that this group doesn't contain a nontrivial proper fully invariant subgroups and doesn't satisfy the normalizer condition.

Ключевые слова: wreath product, fully invariant subgroups.

MSC: 20B22, 20E18, 20E22

Поступила в редакцию: 15.04.2011
Исправленный вариант: 19.12.2011

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024