RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2009, выпуск 3, страницы 62–68 (Mi adm134)

RESEARCH ARTICLE

A new characterization of groups with central chief factors

Orlando Stanley Juriaans, Deborah Martins Raphael

Instituto de Matemática e Estatística, Universidade de São Paulo Caixa Postal 66281 CEP. 05315–970 São Paulo–Brasil

Аннотация: In [1] it is proved that a locally nilpotent group is an $(X)$-group arising the question whether the converse holds. In this paper we derive some interesting properties and give a complete characterization of $(X)$-groups. As a consequence we obtain a new characterization of groups whose chief factors are central and it follows also that there exists an $(X)$-group which is not locally nilpotent, thus answering the question raised in [1]. We also prove a result which extends one on finitely generated nilpotent groups due to Gruenberg.

Ключевые слова: $(X)$-group, nilpotent, residually central, Z-group.

MSC: Primary 2036, 16U70; Secondary 20C10

Поступила в редакцию: 12.08.2009
Исправленный вариант: 25.09.2009

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024