RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2009, выпуск 4, страницы 158–166 (Mi adm149)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

Groups with many generalized $FC$-subgroup

Alessio Russoa, Giovanni Vincenzib

a Dipartimento di Matematica, SecondaUniversità di Napoli, Via Vivaldi 43, I – 81100 Caserta (Italy)
b Dipartimento di Matematica e Informatica, Universitá di Salerno, Via Ponte Don Melillo, I – 84084 Fisciano, Salerno (Italy)

Аннотация: Let $FC^0$ be the class of all finite groups, and for each non-negative integer $m$ define by induction the group class $FC^{m+1}$ consisting of all groups $G$ such that the factor group $G/C_G(x^G)$ has the property $FC^m$ for all elements $x$ of $G$. Clearly, $FC^1$ is the class of $FC$-groups and every nilpotent group with class at most $m$ belongs to $FC^m$. The class of $FC^m$-groups was introduced in [6]. In this article the structure of groups with finitely many normalizers of non-$FC^m$-subgroups (respectively, the structure of groups whose subgroups either are subnormal with bounded defect or have the property $FC^m$) is investigated.

Ключевые слова: Conjugacy class, $FC$-groups, normalizer subgroup, subnormal subgroup.

MSC: 20F24

Поступила в редакцию: 11.07.2009
Исправленный вариант: 11.07.2009

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024