RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2010, том 9, выпуск 2, страницы 1–10 (Mi adm16)

Эта публикация цитируется в 2 статьях

RESEARCH ARTICLE

A note about splittings of groups and commensurability under a cohomological point of view

Maria Gorete Carreira Andrade, Ermínia de Lourdes Campello Fanti

UNESP – Universidade Estadual Paulista, Departamento de Matemática Rua Cristovão Colombo, 2265, 15054-000, São José do Rio Preto – SP Brazil

Аннотация: Let $G$ be a group, let $S$ be a subgroup with infinite index in $G$ and let $\mathcal{F}_SG$ be a certain $\mathbb Z_2G$-module. In this paper, using the cohomological invariant $E(G,S,\mathcal{F}_SG)$ or simply $\tilde{E}(G,S)$ (defined in [2]), we analyze some results about splittings of group $G$ over a commensurable with $S$ subgroup which are related with the algebraic obstruction "$\mathrm{sing}_G(S)$" defined by Kropholler and Roller [8]. We conclude that $\tilde{E}(G,S)$ can substitute the obstruction "$\mathrm{sing}_G(S)$" in more general way. We also analyze splittings of groups in the case, when $G$ and $S$ satisfy certain duality conditions.

Ключевые слова: Splittings of groups, cohomology of groups, commensurability.

MSC: 20J05, 20J06, 20E06

Поступила в редакцию: 16.09.2009
Исправленный вариант: 09.11.2010

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2025