Эта публикация цитируется в
13 статьях
RESEARCH ARTICLE
Algebra in superextensions of groups, I: zeros and commutativity
T. Banakha,
V. Gavrylkivb,
O. Nykyforchynb a Ivan Franko National University of Lviv,
Universytetska 1, 79000, Ukraine
b Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
Аннотация:
Given a group
$X$ we study the algebraic structure of its superextension
$\lambda(X)$. This is a right-topological semigroup consisting of all maximal linked systems on
$X$ endowed with the operation
$$
\mathcal A\circ\mathcal B=\{C\subset X:\{x\in X:x^{-1}C\in\mathcal B\}\in\mathcal A\}
$$
that extends the group operation of
$X$. We characterize right zeros of
$\lambda(X)$ as invariant maximal linked systems on
$X$ and prove that
$\lambda(X)$ has a right zero if and only if each element of
$X$ has odd order. On the other hand, the semigroup
$\lambda(X)$ contains a left zero if and only if it contains a zero if and only if
$X$ has odd order
$|X|\le 5$. The semigroup
$\lambda(X)$ is commutative if and only if
$|X|\le 4$. We finish the paper with a complete description of the algebraic structure of the semigroups
$\lambda(X)$ for all groups
$X$ of cardinality
$|X|\le 5$.
Ключевые слова:
Superextension, right-topological semigroup.
MSC: 20M99,
54B20 Поступила в редакцию: 14.02.2008
Исправленный вариант: 14.10.2008
Язык публикации: английский