RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2008, выпуск 3, страницы 1–29 (Mi adm166)

Эта публикация цитируется в 13 статьях

RESEARCH ARTICLE

Algebra in superextensions of groups, I: zeros and commutativity

T. Banakha, V. Gavrylkivb, O. Nykyforchynb

a Ivan Franko National University of Lviv, Universytetska 1, 79000, Ukraine
b Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

Аннотация: Given a group $X$ we study the algebraic structure of its superextension $\lambda(X)$. This is a right-topological semigroup consisting of all maximal linked systems on $X$ endowed with the operation
$$ \mathcal A\circ\mathcal B=\{C\subset X:\{x\in X:x^{-1}C\in\mathcal B\}\in\mathcal A\} $$
that extends the group operation of $X$. We characterize right zeros of $\lambda(X)$ as invariant maximal linked systems on $X$ and prove that $\lambda(X)$ has a right zero if and only if each element of $X$ has odd order. On the other hand, the semigroup $\lambda(X)$ contains a left zero if and only if it contains a zero if and only if $X$ has odd order $|X|\le 5$. The semigroup $\lambda(X)$ is commutative if and only if $|X|\le 4$. We finish the paper with a complete description of the algebraic structure of the semigroups $\lambda(X)$ for all groups $X$ of cardinality $|X|\le 5$.

Ключевые слова: Superextension, right-topological semigroup.

MSC: 20M99, 54B20

Поступила в редакцию: 14.02.2008
Исправленный вариант: 14.10.2008

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2025