RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2007, выпуск 2, страницы 1–15 (Mi adm202)

RESEARCH ARTICLE

Bandwidth reduction in rectangular grids

Titu Andreescua, Water Stromquistb, Zoran Šunícc

a Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75083–0688, USA
b Swarthmore College, Department of Mathematics and Statistics, 500 College Avenue, Swarthmore, PA. 19081, USA
c Department of Mathematics, Texas A&M University, MS–3368, College Station, TX 77843–3368, USA

Аннотация: We show that the bandwidth of a square two-dimensional grid of arbitrary size can be reduced if two (but not less than two) edges are deleted. The two deleted edges may not be chosen arbitrarily, but they may be chosen to share a common endpoint or to be non-adjacent.
We also show that the bandwidth of the rectangular $n \times m$ ($n\leq m$) grid can be reduced by $k$, for all $k$ that are sufficiently small, if $m-n+2k$ edges are deleted.

Ключевые слова: linear bandwidth, rectangular grid.

MSC: 05C78

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024