RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2006, выпуск 3, страницы 71–91 (Mi adm272)

RESEARCH ARTICLE

On fully wild categories of representations of posets

Stanisław Kasjan

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87–100 Toruń, Poland

Аннотация: Assume that $I$ is a finite partially ordered set and $k$ is a field. We prove that if the category prin$(kI)$ of prinjective modules over the incidence $k$-algebra $kI$ of $I$ is fully $k$-wild then the category $fpr(I,k)$ of finite dimensional $k$-representations of $I$ is also fully $k$-wild. A key argument is a construction of fully faithful exact endofunctors of the category of finite dimensional $k\langle x,y\rangle$-modules, with the image contained in certain subcategories.

Ключевые слова: representations of posets, wild, fully wild representation type, endofunctors of wild module category.

MSC: 16G60, 16G30, 03C60

Поступила в редакцию: 01.06.2005
Исправленный вариант: 22.11.2006

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024