RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2006, выпуск 3, страницы 101–118 (Mi adm274)

RESEARCH ARTICLE

Arithmetic properties of exceptional lattice paths

Wolfgang Rump

Institut for Algebra und Zahlentheorie, Universitat, Stuttgart, Pfaffenwaldring 57, D–70550 Stuttgart, Germany

Аннотация: For a fixed real number $\rho>0$, let $L$ be an affine line of slope $\rho^{-1}$ in $\mathbb{R}^2$. We show that the closest approximation of $L$ by a path $P$ in $\mathbb{Z}^2$ is unique, except in one case, up to integral translation. We study this exceptional case. For irrational $\rho$, the projection of $P$ to $L$ yields two quasicrystallographic tilings in the sense of Lunnon and Pleasants [5]. If $\rho$ satisfies an equation $x^2=mx+1$ with $m\in\mathbb{Z}$, both quasicrystals are mapped to each other by a substitution rule. For rational $\rho$, we characterize the periodic parts of $P$ by geometric and arithmetic properties, and exhibit a relationship to the hereditary algebras $H_{\rho}(K)$ over a field $K$ introduced in a recent proof of a conjecture of Roiter.

Ключевые слова: Lattice path, uniform enumeration, quasicrystal.

MSC: 05B30, 11B50; 52C35, 11A07

Поступила в редакцию: 20.04.2005
Исправленный вариант: 19.11.2006

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024