RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2006, выпуск 4, страницы 57–66 (Mi adm279)

RESEARCH ARTICLE

On groups with the minimal condition for non-invariant decomposable abelian subgroups

F. N. Lyman, M. G. Drushlyak


Аннотация: The infinite groups, in which there is no any infinite descending chain of non-invariant decomposable abelian subgroups ($md$-groups) are studied. Infinite groups with the minimal condition for non-invariant abelian subgroups, infinite groups with the condition of normality for all decomposable abelian subgroups and others belong to the class of $md$-groups. The complete description of infinite locally finite and locally soluble non-periodic $md$-groups is given, the connection of the class of $md$-groups with other classes of groups are investigated.

Ключевые слова: group, subgroup, order of the group, involution, locally finite group, non-periodic group, decomposable abelian subgroup, minimal condition, condition of normality.

Поступила в редакцию: 11.08.2006
Исправленный вариант: 29.03.2006

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024