RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2005, выпуск 1, страницы 47–61 (Mi adm288)

RESEARCH ARTICLE

Miniversal deformations of chains of linear mappings

T. N. Gaiduka, V. V. Sergeichuka, N. A. Zharkob

a Institute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine
b Mech.-Math. Faculty, Kiev National University, Vladimirskaya 64, Kiev, Ukraine

Аннотация: V. I. Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29–43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix $A$, but also the family of all matrices close to $A$, can be reduced by similarity transformations smoothly depending on the entries of matrices. We study miniversal deformations of quiver representations and obtain a miniversal deformation of matrices of chains of linear mappings
$$ V_1\,\frac{\qquad}{\qquad}\,V_2\,\frac{\qquad}{\qquad}\,\cdots\,\frac{\qquad}{\qquad}\,V_t\,, $$
where all $V_i$ are complex or real vector spaces and each line denotes $\longrightarrow$ or $\longleftarrow$.

Ключевые слова: Parametric matrices; Quivers; Miniversal deformations.

MSC: 15A21, 16G20

Поступила в редакцию: 31.01.2005
Исправленный вариант: 24.03.2005

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024