RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2005, выпуск 1, страницы 122–132 (Mi adm294)

Эта публикация цитируется в 2 статьях

RESEARCH ARTICLE

Wreath product of Lie algebras and Lie algebras associated with Sylow p-subgroups of finite symmetric groups

Vitaly I. Sushchansky, Nataliya V. Netreba

Silesian University of Technology, Gliwice, Poland and Kyiv Taras Shevchenko University, Kyiv, Ukraine

Аннотация: We define a wreath product of a Lie algebra $L$ with the one-dimensional Lie algebra $L_1$ over $\mathbb F_p$ and determine some properties of this wreath product. We prove that the Lie algebra associated with the Sylow p-subgroup of finite symmetric group $S_{p^m}$ is isomorphic to the wreath product of $m$ copies of $L_1$. As a corollary we describe the Lie algebra associated with Sylow $p$-subgroup of any symmetric group in terms of wreath product of one-dimensional Lie algebras.

Ключевые слова: Lie algebra, wreath product, semidirect product, Lie algebra associated with the lower central series of the group, Sylow p-subgroup, symmetric group.

MSC: 17B30, 17B60, 20F18, 20F40

Поступила в редакцию: 27.03.2005
Исправленный вариант: 05.04.2005

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024