Эта публикация цитируется в
9 статьях
RESEARCH ARTICLE
Automorphisms of finitary incidence rings
Nikolay Khripchenko V. N. Karazin Kharkiv National University, Faculty of Mathematics and Mechanics
Аннотация:
Let
$P$ be a quasiordered set,
$R$ an associative unital ring,
$\mathcal C(P,R)$ a partially ordered category associated with the pair
$(P,R)$ [6],
$FI(P,R)$ a finitary incidence ring of
$\mathcal C(P,R)$ [6]. We prove that the group
$\mathrm{Out}FI$ of outer automorphisms of
$FI(P,R)$ is isomorphic to the group
$\mathrm{Out}\mathcal C$ of outer automorphisms of
$\mathcal C(P,R)$ under the assumption that
$R$ is indecomposable. In particular, if
$R$ is local, the equivalence classes of
$P$ are finite and
$P=\bigcup_{i\in I}P_i$ is the decomposition of
$P$ into the disjoint union of the connected components, then $\mathrm{Out}FI\cong (H^1(\overline P,C(R)^*)\rtimes\prod_{i\in I}\mathrm{Out}R)\rtimes\mathrm{Out}P$. Here
$H^1(\overline P,C(R)^*)$ is the first cohomology group of the order complex of the induced poset
$\overline P$ with the values in the multiplicative group of central invertible elements of
$R$. As a consequences, Theorem 2 [9], Theorem 5 [2] and Theorem 1.2 [8] are obtained.
Ключевые слова:
finitary incidence algebra, partially ordered category, quasiordered set, automorphism.
MSC: 18E05,
18B35,
16S50,
16S60,
16G20,
08A35 Поступила в редакцию: 24.05.2010
Исправленный вариант: 08.11.2010
Язык публикации: английский