RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2005, выпуск 3, страницы 1–17 (Mi adm308)

Эта публикация цитируется в 4 статьях

RESEARCH ARTICLE

Topological semigroups of matrix units

Oleg V. Gutikab, K. P. Pavlyka

a Department of Algebra, Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of National Academy of Sciences, Naukova 3b, Lviv, 79060, Ukraine, and Department of Mathematics, Ivan Franko Lviv National University, Universytetska 1, Lviv, 79000, Ukraine
b Department of Algebra, Pidstrygach Institute for Applied Problems of Mechanics and Mathematics of National Academy of Sciences, Naukova 3b, Lviv, 79060, Ukraine

Аннотация: We prove that the semigroup of matrix units is stable. Compact, countably compact and pseudocompact topologies $\tau$ on the infinite semigroup of matrix units $B_\lambda$ such that $(B_\lambda,\tau)$ is a semitopological (inverse) semigroup are described. We prove the following properties of an infinite topological semigroup of matrix units. On the infinite semigroup of matrix units there exists no semigroup pseudocompact topology. Any continuous homomorphism from the infinite topological semigroup of matrix units into a compact topological semigroup is annihilating. The semigroup of matrix units is algebraically $h$-closed in the class of topological inverse semigroups. Some $H$-closed minimal semigroup topologies on the infinite semigroup of matrix units are considered.

Ключевые слова: semigroup of matrix units, semitopological semigroup, topological semigroup, topological inverse semigroup, $H$-closed semigroup, absolutely $H$-closed semigroup, algebraically $h$-closed semigroup, Bohr compactification, minimal topological semigroup, minimal semigroup topology.

MSC: 20M15, 20M18, 22A15, 54A10, 54C25, 54D25, 54D35, 54H10

Поступила в редакцию: 16.06.2005
Исправленный вариант: 15.09.2005

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024