RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2005, выпуск 3, страницы 46–55 (Mi adm311)

RESEARCH ARTICLE

Criterions of supersolubility of some finite factorizable groups

Helena V. Legchekova

Gomel State University of F. korina, Belarus, 246019, Gomel, Sovetskaya Str., 103

Аннотация: Let $A$$B$ be subgroups of a group $G$ and $\emptyset\ne X\subseteq G$. A subgroup $A$ is said to be $X$-permutable with $B$ if for some $x\in X$ we have $AB^x=B^xA$ [1]. We obtain some new criterions for supersolubility of a finite group $G=AB$, where $A$ and $B$ are supersoluble groups. In particular, we prove that a finite group $G=AB$ is supersoluble provided $A$$B$ are supersolube subgroups of $G$ such that every primary cyclic subgroup of $A$ $X$-permutes with every Sylow subgroup of $B$ and if in return every primary cyclic subgroup of $B$ $X$-permutes with every Sylow subgroup of $A$ where $X=F(G)$ is the Fitting subgroup of $G$.

Ключевые слова: finite group, supersoluble group, permutable subgroups, product of subgroups.

MSC: 20D20

Поступила в редакцию: 15.08.2005
Исправленный вариант: 10.09.2005

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024