RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2005, выпуск 4, страницы 28–35 (Mi adm318)

RESEARCH ARTICLE

Presentations and word problem for strong semilattices of semigroups

Gonca Ayik, Hayrullah Ayik, Yu. Ünlü

Çukurova University, Department of Mathematics 01330–Adana, Turkey

Аннотация: Let $I$ be a semilattice, and $S_i(i\in I)$ be a family of disjoint semigroups. Then we prove that the strong semilattice $S=\mathcal{S} [I,S_i,\phi_{j,i}]$ of semigroups $S_i$ with homomorphisms $\phi _{j,i}:S_j\rightarrow S_i$ $(j\geq i)$ is finitely presented if and only if $I$ is finite and each $S_i$ $(i\in I)$ is finitely presented. Moreover, for a finite semilattice $I$$S$ has a soluble word problem if and only if each $S_i$ $(i\in I)$ has a soluble word problem. Finally, we give an example of non-automatic semigroup which has a soluble word problem.

Ключевые слова: Semigroup presentations, strong semilattices of semigroups, word problems.

MSC: 20M05

Поступила в редакцию: 12.09.2005
Исправленный вариант: 15.12.2005

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024