RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2004, выпуск 1, страницы 87–111 (Mi adm330)

Эта публикация цитируется в 2 статьях

RESEARCH ARTICLE

Categories of lattices, and their global structure in terms of almost split sequences

Wolfgang Rump

Institut für Algebra und Zahlentheorie, Universität Stuttgart, Pfaffenwaldring 57, D–70550 Stuttgart, Germany

Аннотация: A major part of Iyama's characterization of Auslander–Reiten quivers of representation-finite orders $\Lambda$ consists of an induction via rejective subcategories of $\Lambda$-lattices, which amounts to a resolution of $\Lambda$ as an isolated singularity. Despite of its useful applications (proof of Solomon's second conjecture and the finiteness of representation dimension of any artinian algebra), rejective induction cannot be generalized to higher dimensional Cohen–Macaulay orders $\Lambda$. Our previous characterization of finite Auslander–Reiten quivers of $\Lambda$ in terms of additive functions [22] was proved by means of L-functors, but we still had to rely on rejective induction. In the present article, this dependence will be eliminated.

Ключевые слова: L-functor, lattice category, $\tau$-category, Auslander-Reiten quiver.

MSC: 16G30, 16G70, 18E10; 16G60

Поступила в редакцию: 16.10.2003
Исправленный вариант: 26.01.2004

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024