RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2003, выпуск 1, страницы 36–67 (Mi adm368)

Эта публикация цитируется в 3 статьях

RESEARCH ARTICLE

On intersections of normal subgroups in free groups

O. V. Kulikova

Department of Mechanics and Mathematics, Moscow State University,Vorobievy Gory 1, 119992 Moscow, Russia

Аннотация: Let $N_1$ (respectively $N_2$) be a normal closure of a set $R_1=\{ u_i\}$ (respectively $R_2=\{v_j\}$) of cyclically reduced words of the free group $F(A)$. In the paper we consider geometric conditions on $R_1$ and $R_2$ for $N_1\cap N_2=[N_1,N_2]$. In particular, it turns out that if a presentation $<A\,\mid R_1,R_2>$ is aspherical (for example, it satisfies small cancellation conditions $C(p)\& T(q)$ with $1/p+1/q=1/2$), then the equality $N_1\cap N_2=[N_1,N_2]$ holds.

Ключевые слова: normal closure of words in free groups, presentations of groups, pictures, mutual commutants, intersection of groups, aspherisity, small cancellation conditions.

MSC: 20F05, 20F06

Поступила в редакцию: 09.12.2002

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024