RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2003, выпуск 1, страницы 93–102 (Mi adm372)

Эта публикация цитируется в 4 статьях

RESEARCH ARTICLE

Uniform ball structures

I. V. Protasov

Department Cybernetics, Kyiv State University, Volodimirska 64, Kyiv 01033, Ukraine

Аннотация: A ball structure is a triple $\mathbb B=(X,P,B)$, where $X,P$ are nonempty sets and, for all $x\in X$, $\alpha \in P$, $B(x,\alpha )$ is a subset of $X, x\in B(x,\alpha)$, which is called a ball of radius $\alpha$ around $x$. We introduce the class of uniform ball structures as an asymptotic counterpart of the class of uniform topological spaces. We show that every uniform ball structure can be approximated by metrizable ball structures. We also define two types of ball structures closed to being metrizable, and describe the extremal elements in the classes of ball structures with fixed support $X$.

Ключевые слова: ball structure, metrizability.

MSC: 03E99, 54A05, 54E15

Поступила в редакцию: 31.01.2003

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024