RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2002, выпуск 1, страницы 32–63 (Mi adm398)

Эта публикация цитируется в 7 статьях

RESEARCH ARTICLE

Tiled orders over discrete valuation rings, nite Markov chains and partially ordered sets. I

Zh. T. Chernousovaa, M. A. Dokuchaevb, M. A. Khibinac, V. V. Kirichenkoa, S. G. Miroshnichenkoa, V. N. Zhuravleva

a Faculty of Mechanics and Mathematics, Kiev National Taras Shevchenko Univ., Vladimirskaya Str., 64, Kiev, Ukraine
b Departamento de Matematica Univ. de Sao Paulo, Caixa Postal 66281, Sao Paulo, SP, 05315–970 — Brazil
c Glushkov In-t of Cybernetics NAS Ukraine, Glushkov Av., 40, 03680 Kiev, Ukraine

Аннотация: We prove that the quiver of tiled order over a discrete valuation ring is strongly connected and simply laced. With such quiver we associate a finite ergodic Markov chain. We introduce the notion of the index $in\,A$ of a right noetherian semiperfect ring $A$ as the maximal real eigen-value of its adjacency matrix. A tiled order $\Lambda$ is integral if $in\,\Lambda$ is an integer. Every cyclic Gorenstein tiled order is integral. In particular, $in\, \Lambda\,=\,1$ if and only if $\Lambda$ is hereditary. We give an example of a non-integral Gorenstein tiled order. We prove that a reduced $(0, 1)$-order is Gorenstein if and only if either $in\,\Lambda\,=\,w(\Lambda )\,=\,1$, or $in\,\Lambda\,=\,w(\Lambda )\,=\,2$, where $w(\Lambda )$ is a width of $\Lambda$.

Ключевые слова: semiperfect ring, tiled order, quiver, partially ordered set, index of semiperfect ring, Gorenstein tiled order, finite Markov chain.

MSC: 16P40, 16G10

Поступила в редакцию: 26.10.2002

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024