RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2013, том 15, выпуск 2, страницы 213–228 (Mi adm422)

Эта публикация цитируется в 9 статьях

RESEARCH ARTICLE

Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators)

A. I. Kashu

Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, 5 Academiei str., Chişinău, MD – 2028 MOLDOVA

Аннотация: In this work the closure operators of a category of modules $R$-Mod are studied. Every closure operator $C$ of $R$-Mod defines two functions $\mathcal{F}_1^{C}$ and $\mathcal{F}_2^{C}$, which in every module $M$ distinguish the set of $C$-dense submodules $\mathcal{F}_1^{C}(M)$ and the set of $C$-closed submodules $\mathcal{F}_2^{C}(M)$. By means of these functions three types of closure operators are described: 1) weakly hereditary; 2) idempotent; 3) weakly hereditary and idempotent.

Ключевые слова: ring, module, lattice, preradical, closure operator, lattice of submodules, dense submodule, closed submodule.

MSC: 16D90, 16S90, 06B23

Поступила в редакцию: 19.02.2013
Исправленный вариант: 25.05.2013

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024