RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2010, том 10, выпуск 1, страницы 104–111 (Mi adm43)

RESEARCH ARTICLE

On separable group rings

George Szeto, Lianyong Xue

Department of Mathematics, Bradley University, Peoria, Illinois 61625-U.S.A.

Аннотация: Let $G$ be a finite non-abelian group $R$ a ring with 1, and $\overline G$ the inner automorphism group of the group ring $RG$ over $R$ induced by the elements of $G$. Then three main results are shown for the separable group ring $RG$ over $R$: (i) $RG$ is not a Galois extension of $(RG)^{\overline G}$ with Galois group $\overline G$ when the order of $G$ is invertible in $R$, (ii) an equivalent condition for the Galois map from the subgroups $H$ of $G$ to $(RG)^H$ by the conjugate action of elements in $H$ on $RG$ is given to be one-to-one and for a separable subalgebra of $RG$ having a preimage, respectively, and (iii) the Galois map is not an onto map.

Ключевые слова: Galois extensions, Galois algebras, separable extensions, group rings, group algebras.

MSC: 16S35, 16W20

Поступила в редакцию: 04.05.2009
Исправленный вариант: 04.05.2009

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024