RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2013, том 16, выпуск 2, страницы 217–225 (Mi adm448)

RESEARCH ARTICLE

On some linear groups, having a big family of $G$-invariant subspaces

L. A. Kurdachenko, A. V. Sadovnichenko

Department of Algebra and Geometry, School of Mathematics and Mechanics, National University of Dnepropetrovsk, Gagarin prospect 72, Dnepropetrovsk 10, 49010

Аннотация: Let $F$ be a field, $A$ a vector space over $F$, $GL(F, A)$ be the group of all automorphisms of the vector space $A$. If $B$ is a subspace of $A$, then denote by $BFG$ the $G$-invariant subspace, generated by $B$. A subspace $B$ is called nearly $G$-invariant, if $dim_F(BFG/B)$ is finite. In this paper we described the situation when every subspace of $A$ is nearly $G$-invariant.

Ключевые слова: Vector space, linear group, module, $G$-invariant subspace, nearly $G$-invariant subspace.

MSC: 15A03, 20F16, 20F29

Поступила в редакцию: 13.08.2013
Исправленный вариант: 13.08.2013

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024