RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2014, том 17, выпуск 1, страницы 98–109 (Mi adm461)

Эта публикация цитируется в 6 статьях

RESEARCH ARTICLE

On the subset combinatorics of $G$-spaces

Igor Protasova, Sergii Slobodianiukb

a Department of Cybernetics, Kyiv National University, Volodymyrska 64, 01033, Kyiv, Ukraine
b Department of Mechanics and Mathematics, Kyiv National University, Volodymyrska 64, 01033, Kyiv, Ukraine

Аннотация: Let $G$ be a group and let $X$ be a transitive $G$-space. We classify the subsets of $X$ with respect to a translation invariant ideal $J$ in the Boolean algebra of all subsets of $X$, introduce and apply the relative combinatorical derivations of subsets of $X$. Using the standard action of $G$ on the Stone-Čech compactification $\beta X$ of the discrete space $X$, we characterize the points $p\in\beta X$ isolated in $Gp$ and describe a size of a subset of $X$ in terms of its ultracompanions in $\beta X$. We introduce and characterize scattered and sparse subsets of $X$ from different points of view.

Ключевые слова: $G$-space, relative combinatorial derivation, Stone-Čech compactification, ultracompanion, sparse and scattered subsets.

MSC: 20F69, 22A15, 54D35

Поступила в редакцию: 15.01.2014
Исправленный вариант: 15.01.2014

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024