Эта публикация цитируется в
6 статьях
RESEARCH ARTICLE
On the subset combinatorics of $G$-spaces
Igor Protasova,
Sergii Slobodianiukb a Department of Cybernetics, Kyiv National University, Volodymyrska 64, 01033, Kyiv, Ukraine
b Department of Mechanics and Mathematics, Kyiv National University, Volodymyrska 64, 01033, Kyiv, Ukraine
Аннотация:
Let
$G$ be a group and let
$X$ be a transitive
$G$-space. We classify the subsets of
$X$ with respect to a translation invariant ideal
$J$ in the Boolean algebra of all subsets of
$X$, introduce and apply the relative combinatorical derivations of subsets of
$X$. Using the standard action of
$G$ on the Stone-Čech compactification
$\beta X$ of the discrete space
$X$, we characterize the points
$p\in\beta X$ isolated in
$Gp$ and describe a size of a subset of
$X$ in terms of its ultracompanions in
$\beta X$. We introduce and characterize scattered and sparse subsets of
$X$ from different points of view.
Ключевые слова:
$G$-space, relative combinatorial derivation, Stone-Čech compactification, ultracompanion, sparse and scattered subsets.
MSC: 20F69,
22A15,
54D35 Поступила в редакцию: 15.01.2014
Исправленный вариант: 15.01.2014
Язык публикации: английский