RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2014, том 17, выпуск 1, страницы 110–134 (Mi adm462)

SURVEY ARTICLE

Some combinatorial problems in the theory of partial transformation semigroups

A. Umar

Department of Mathematics and Statistics, Sultan Qaboos University, Al-Khod, PC 123, OMAN

Аннотация: Let $X_n = \{1, 2, \ldots , n\}$. On a partial transformation $\alpha : \mathop{\rm Dom}\nolimits \alpha \subseteq X_n \rightarrow \mathop{\rm Im}\alpha \subseteq X_n$ of $X_n$ the following parameters are defined: the breadth or width of $\alpha$ is $\mid\mathop{\rm Dom}\nolimits \alpha\mid$, the collapse of $\alpha$ is $c(\alpha)=\mid\cup_{t \in \mathop{\rm Im}\alpha}\{t \alpha^{-1}: \mid t\alpha^{-1}\mid \geq 2\}\mid$, fix of $\alpha$ is $f(\alpha) = \mid\{x \in X_n: x\alpha = x\}\mid$, the height of $\alpha$ is $\mid\mathop{\rm Im}\alpha\mid$, and the right [left] waist of $\alpha$ is $\max(\mathop{\rm Im}\alpha)\, [\min(\mathop{\rm Im}\alpha)]$. The cardinalities of some equivalences defined by equalities of these parameters on $\mathcal{T}_n$, the semigroup of full transformations of $X_n$, and $\mathcal{P}_n$ the semigroup of partial transformations of $X_n$ and some of their notable subsemigroups that have been computed are gathered together and the open problems highlighted.

Ключевые слова: full transformation, partial transformation, breadth, collapse, fix, height and right (left) waist of a transformation. Idempotents and nilpotents.

MSC: 20M17, 20M20, 05A10, 05A15

Поступила в редакцию: 29.01.2012
Исправленный вариант: 24.02.2012

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024