Эта публикация цитируется в
1 статье
RESEARCH ARTICLE
Chromatic number of graphs with special distance sets, I
Venkataraman Yegnanarayanan Department of Science&Humanities, Vignan University, Guntur-522213, India
Аннотация:
Given a subset
$D$ of positive integers, an integer distance graph is a graph
$G(\mathbb{Z}, D)$ with the set
$\mathbb{Z}$ of integers as vertex set and with an edge joining two vertices
$u$ and
$v$ if and only if
$|u - v| \in D$. In this paper we consider the problem of determining the chromatic number of certain integer distance graphs
$G(\mathbb{Z}, D)$whose distance set
$D$ is either 1) a set of
$(n+1)$ positive integers for which the
$n^{th}$ power of the last is the sum of the
$n^{th}$ powers of the previous terms, or 2) a set of pythagorean quadruples, or 3) a set of pythagorean
$n$-tuples, or 4) a set of square distances, or 5) a set of abundant numbers or deficient numbers or carmichael numbers, or 6) a set of polytopic numbers, or 7) a set of happy numbers or lucky numbers, or 8) a set of Lucas numbers, or 9) a set of
$\mathcal{U}$lam numbers, or 10) a set of weird numbers. Besides finding the chromatic number of a few specific distance graphs we also give useful upper and lower bounds for general cases. Further, we raise some open problems.
Ключевые слова:
chromatic number, prime distance graph, unit distance graph.
MSC: 05C15 Поступила в редакцию: 19.04.2012
Исправленный вариант: 05.03.2013
Язык публикации: английский