RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2014, том 17, выпуск 2, страницы 193–221 (Mi adm466)

Эта публикация цитируется в 3 статьях

SURVEY ARTICLE

Densities, submeasures and partitions of groups

Taras Banakhab, Igor Protasovc, Sergiy Slobodianiukc

a Ivan Franko National University of Lviv, Ukraine
b Jan Kochanowski University in Kielce, Poland
c Taras Shevchenko National University, Kyiv, Ukraine

Аннотация: In 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition $G=A_1\cup\dots\cup A_n$ of a group $G$ there is a cell $A_i$ of the partition such that $G=FA_iA_i^{-1}$ for some set $F\subset G$ of cardinality $|F|\le n$? In this paper we survey several partial solutions of this problem, in particular those involving certain canonical invariant densities and submeasures on groups. In particular, we show that for any partition $G=A_1\cup\dots\cup A_n$ of a group $G$ there are cells $A_i$, $A_j$ of the partition such that The last three statements are derived from the corresponding density results.

Ключевые слова: partition of a group; density; submeasure; amenable group.

MSC: 05E15, 05D10, 28C10

Поступила в редакцию: 22.04.2014
Исправленный вариант: 22.04.2014

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024