RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2014, том 18, выпуск 1, страницы 42–49 (Mi adm480)

Эта публикация цитируется в 16 статьях

RESEARCH ARTICLE

Connectivity and planarity of power graphs of finite cyclic, dihedral and dicyclic groups

Sriparna Chattopadhyay, Pratima Panigrahi

Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

Аннотация: The power graph of a finite group is the graph whose vertices are the elements of the group and two distinct vertices are adjacent if and only if one is an integral power of the other. In this paper we discuss the planarity and vertex connectivity of the power graphs of finite cyclic, dihedral and dicyclic groups. Also we apply connectivity concept to prove that the power graphs of both dihedral and dicyclic groups are not Hamiltonian.

Ключевые слова: power graph, connectivity, planarity, cyclic group, dihedral group, dicyclic group.

MSC: 05C25, 05C10, 05C40

Поступила в редакцию: 14.07.2012
Исправленный вариант: 04.04.2013

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2025