RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2015, том 19, выпуск 1, страницы 1–7 (Mi adm501)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

On subgroups of finite exponent in groups

Orest D. Artemovych

Institute of Mathematics, Cracow University of Technology

Аннотация: We investigate properties of groups with subgroups of finite exponent and prove that a non-perfect group $G$ of infinite exponent with all proper subgroups of finite exponent has the following properties:
$(1)$ $G$ is an indecomposable $p$-group,
$(2)$ if the derived subgroup $G'$ is non-perfect, then $G/G''$ is a group of Heineken-Mohamed type.
We also prove that a non-perfect indecomposable group $G$ with the non-perfect locally nilpotent derived subgroup $G'$ is a locally finite $p$-group.

Ключевые слова: locally finite group, finitely generated group, exponent, group of Heineken-Mohamed type.

MSC: 20F50, 20F26, 20E26

Поступила в редакцию: 03.12.2014
Исправленный вариант: 23.02.2015

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024