RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2015, том 19, выпуск 1, страницы 130–144 (Mi adm512)

Эта публикация цитируется в 5 статьях

RESEARCH ARTICLE

On the flag geometry of simple group of Lie type and multivariate cryptography

Vasyl Ustimenko

Maria Curie-Sklodowska University, Lublin

Аннотация: We propose some multivariate cryptosystems based on finite $BN$-pair $G$ defined over the fields $F_q$. We convert the adjacency graph for maximal flags of the geometry of group $G$ into a finite Tits automaton by special colouring of arrows and treat the largest Schubert cell ${\rm Sch}$ isomorphic to vector space over $F_q$ on this variety as a totality of possible initial states and a totality of accepting states at a time. The computation (encryption map) corresponds to some walk in the graph with the starting and ending points in ${\rm Sch}$. To make algorithms fast we will use the embedding of geometry for $G$ into Borel subalgebra of corresponding Lie algebra. We also consider the notion of symbolic Tits automata. The symbolic initial state is a string of variables $t_{\alpha}\in F_q$, where roots $\alpha$ are listed according Bruhat's order, choice of label will be governed by special multivariate expressions in variables $t_{\alpha}$, where $\alpha$ is a simple root. Deformations of such nonlinear map by two special elements of affine group acting on the plainspace can produce a computable in polynomial time nonlinear transformation. The information on adjacency graph, list of multivariate governing functions will define invertible decomposition of encryption multivariate function. It forms a private key which allows the owner of a public key to decrypt a ciphertext formed by a public user. We also estimate a polynomial time needed for the generation of a public rule.

Ключевые слова: multivariate cryptography, flag variety, geometry of simple group of Lie type, Schubert cell, symbolic walks.

Поступила в редакцию: 23.01.2015
Исправленный вариант: 21.02.2015

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024