RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2015, том 19, выпуск 2, страницы 172–192 (Mi adm515)

RESEARCH ARTICLE

Projectivity and flatness over the graded ring of normalizing elements

T. Guédénon

Département de Mathématiques, Université de Ziguinchor

Аннотация: Let $k$ be a field, $H$ a cocommutative bialgebra, $A$ a commutative left $H$-module algebra, $\operatorname{Hom}(H,A)$ the $k$-algebra of the $k$-linear maps from $H$ to $A$ under the convolution product, $Z(H,A)$ the submonoid of $\operatorname{Hom}(H,A)$ whose elements satisfy the cocycle condition and $G$ any subgroup of the monoid $Z(H,A)$. We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of normalizing elements of $A$. When $A$ is not necessarily commutative we obtain similar results over the graded ring of weakly semi-invariants of $A$ replacing $Z(H,A)$ by the set $\chi(H,Z(A)^H)$ of all algebra maps from $H$ to $Z(A)^H$, where $Z(A)$ is the center of $A$.

Ключевые слова: projective module, flat module, bialgebra, smash product, graded ring, normalizing element, weakly semi-invariant element.

MSC: 16D40, 16W50, 16W30

Поступила в редакцию: 23.11.2013
Исправленный вариант: 29.10.2014

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024