RESEARCH ARTICLE
Ultrafilters on $G$-spaces
O. V. Petrenko,
I. V. Protasov Department of Cybernetics, Taras Shevchenko National University
Аннотация:
For a discrete group
$G$ and a discrete
$G$-space
$X$, we identify the Stone-Čech compactifications
$\beta G$ and
$\beta X$ with the sets of all ultrafilters on
$G$ and
$X$, and apply the natural action of
$\beta G$ on
$\beta X$ to characterize large, thick, thin, sparse and scattered subsets of
$X$. We use
$G$-invariant partitions and colorings to define
$G$-selective and
$G$-Ramsey ultrafilters on
$X$. We show that, in contrast to the set-theoretical case, these two classes of ultrafilters are distinct. We consider also universally thin ultrafilters on
$\omega$, the
$T$-points, and study interrelations between these ultrafilters and some classical ultrafilters on
$\omega$.
Ключевые слова:
$G$-space, ultrafilters, ultracompanion,
$G$-selective ultrafilter,
$G$-Ramsey ultrafilter,
$T$-point, ballean, asymorphism.
MSC: 05D10,
22A15,
54H20 Поступила в редакцию: 26.06.2015
Исправленный вариант: 26.06.2015
Язык публикации: английский