RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2015, том 20, выпуск 1, страницы 32–39 (Mi adm529)

RESEARCH ARTICLE

On characteristic properties of semigroups

Vitaliy M. Bondarenko, Yaroslav V. Zaciha

Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev

Аннотация: Let $\mathcal{K}$ be a class of semigroups and $\mathcal{P}$ be a set of general properties of semigroups. We call a subset $Q$ of $\mathcal{P}$ characteristic for a semigroup $S\in\mathcal{K}$ if, up to isomorphism and anti-isomorphism, $S$ is the only semigroup in $\mathcal{K}$, which satisfies all the properties from $Q$. The set of properties $\mathcal{P}$ is called char-complete for $\mathcal{K}$ if for any $S\in \mathcal{K}$ the set of all properties $P\in\mathcal{P}$, which hold for the semigroup $S$, is characteristic for $S$. We indicate a 7-element set of properties of semigroups which is a minimal char-complete set for the class of semigroups of order $3$.

Ключевые слова: semigroup, anti-isomorphism, idempotent, Cayley table, characteristic property, char-complete set.

MSC: 20M

Поступила в редакцию: 07.09.2015
Исправленный вариант: 07.09.2015

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024