RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2015, том 20, выпуск 2, страницы 171–181 (Mi adm538)

Эта публикация цитируется в 2 статьях

RESEARCH ARTICLE

On the $le$-semigroups whose semigroup of bi-ideal elements is a normal band

A. K. Bhuniya, M. Kumbhakar

Department of Mathematics, Visva Bharati University, Santiniketan

Аннотация: It is well known that the semigroup $\mathcal{B}(S)$ of all bi-ideal elements of an $le$-semigroup $S$ is a band if and only if $S$ is both regular and intra-regular. Here we show that $\mathcal{B}(S)$ is a band if and only if it is a normal band and give a complete characterization of the $le$-semigroups $S$ for which the associated semigroup $\mathcal{B}(S)$ is in each of the seven nontrivial subvarieties of normal bands. We also show that the set $\mathcal{B}_{m}(S)$ of all minimal bi-ideal elements of $S$ forms a rectangular band and that $\mathcal{B}_{m}(S)$ is a bi-ideal of the semigroup $\mathcal{B(S)}$.

Ключевые слова: bi-ideal elements, duo; intra-regular, lattice-ordered semigroup, locally testable, normal band, regular.

MSC: 06F05

Поступила в редакцию: 14.07.2014
Исправленный вариант: 18.05.2015

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024