Аннотация:
Base (minimal generating set) of the Sylow 2-subgroup of $S_{2^n}$ is called diagonal if every element of this set acts non-trivially only on one coordinate, and different elements act on different coordinates. The Sylow 2-subgroup $P_n(2)$ of $S_{2^n}$ acts by conjugation on the set of all bases. In presented paper the stabilizer of the set of all diagonal bases in $S_n(2)$ is characterized and the orbits of the action are determined. It is shown that every orbit contains exactly $2^{n-1}$ diagonal bases and $2^{2^n-2n}$ bases at all. Recursive construction of Cayley graphs of $P_n(2)$ on diagonal bases ($n\geq2$) is proposed.
Ключевые слова:Sylow $p$-subgroup, group base, wreath product of groups, Cayley graphs.