RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2016, том 22, выпуск 1, страницы 116–128 (Mi adm578)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

On nilpotent Lie algebras of derivations of fraction fields

A. P. Petravchuk

Department of Algebra and Mathematical Logic, Faculty of Mechanics and Mathematics, Kyiv Taras Shevchenko University, 64, Volodymyrska street, 01033 Kyiv, Ukraine

Аннотация: Let $\mathbb K$ be an arbitrary field of characteristic zero and $A$ an integral $\mathbb K$-domain. Denote by $R$ the fraction field of $A$ and by $W(A)=R\operatorname{Der}_{\mathbb K}A$, the Lie algebra of $\mathbb K$-derivations on $R$ obtained from $\operatorname{Der}_{\mathbb K}A$ via multiplication by elements of $R$. If $L\subseteq W(A)$ is a subalgebra of $W(A)$ denote by $\operatorname{rk}_{R}L$ the dimension of the vector space $RL$ over the field $R$ and by $F=R^{L}$ the field of constants of $L$ in $R$. Let $L$ be a nilpotent subalgebra $L\subseteq W(A)$ with $\operatorname{rk}_{R}L\leq 3$. It is proven that the Lie algebra $FL$ (as a Lie algebra over the field $F$) is isomorphic to a finite dimensional subalgebra of the triangular Lie subalgebra $u_{3}(F)$ of the Lie algebra $\operatorname{Der} F[x_{1}, x_{2}, x_{3}]$, where $u_{3}(F)=\{f(x_{2}, x_{3})\frac{\partial}{\partial x_{1}}+g(x_{3})\frac{\partial}{\partial x_{2}}+c\frac{\partial}{\partial x_{3}}\}$ with $f\in F[x_{2}, x_{3}]$, $g\in F[x_3]$, $c\in F$.

Ключевые слова: Lie algebra, vector field, nilpotent algebra, derivation.

MSC: Primary 17B66; Secondary 17B05, 13N15

Поступила в редакцию: 10.08.2016
Исправленный вариант: 26.08.2016

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024