RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2016, том 22, выпуск 2, страницы 304–316 (Mi adm590)

Эта публикация цитируется в 15 статьях

RESEARCH ARTICLE

Free $n$-dinilpotent doppelsemigroups

Anatolii V. Zhuchoka, Milan Demkob

a Department of Algebra and System Analysis, Luhansk Taras Shevchenko National University, Gogol square, 1, Starobilsk, 92703, Ukraine
b Department of Physics, Mathematics and Techniques, University of Presov, Slovakia, 17. novembra 1, Presov, 08116, Slovakia

Аннотация: A doppelalgebra is an algebra defined on a vector space with two binary linear associative operations. Doppelalgebras play a prominent role in algebraic $K$-theory. In this paper we consider doppelsemigroups, that is, sets with two binary associative operations satisfying the axioms of a doppelalgebra. We construct a free $n$-dinilpotent doppelsemigroup and study separately free $n$-dinilpotent doppelsemigroups of rank $1$. Moreover, we characterize the least $n$-dinilpotent congruence on a free doppelsemigroup, establish that the semigroups of the free $n$-dinilpotent doppelsemigroup are isomorphic and the automorphism group of the free $n$-dinilpotent doppelsemigroup is isomorphic to the symmetric group. We also give different examples of doppelsemigroups and prove that a system of axioms of a doppelsemigroup is independent.

Ключевые слова: doppelalgebra, interassociativity, doppelsemigroup, free $n$-dinilpotent doppelsemigroup, free doppelsemigroup, semigroup, congruence.

MSC: 08B20, 20M10, 20M50, 17A30

Поступила в редакцию: 03.10.2016
Исправленный вариант: 30.11.2016

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024