RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2017, том 23, выпуск 1, страницы 138–179 (Mi adm598)

Эта публикация цитируется в 2 статьях

RESEARCH ARTICLE

Equivalence of Carter diagrams

Rafael Stekolshchik

EFI Optitex Ltd

Аннотация: We introduce the equivalence relation $\rho$ on the set of Carter diagrams and construct an explicit transformation of any Carter diagram containing $l$-cycles with $l > 4$ to an equivalent Carter diagram containing only $4$-cycles. Transforming one Carter diagram $\Gamma_1$ to another Carter diagram $\Gamma_2$ we can get a certain intermediate diagram $\Gamma'$ which is not necessarily a Carter diagram. Such an intermediate diagram is called a connection diagram. The relation $\rho$ is the equivalence relation on the set of Carter diagrams and connection diagrams. The properties of connection and Carter diagrams are studied in this paper. The paper contains an alternative proof of Carter's classification of admissible diagrams.

Ключевые слова: Dynkin diagrams, Carter diagrams, Weyl group, cycles.

MSC: 20F55

Поступила в редакцию: 22.12.2016

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024