RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2017, том 23, выпуск 2, страницы 237–248 (Mi adm607)

RESEARCH ARTICLE

Generators and ranks in finite partial transformation semigroups

Goje Uba Garba, Abdussamad Tanko Imam

Department of Mathematics, Ahmadu Bello University, Zaria-Nigeria

Аннотация: We extend the concept of path-cycles, defined in [2], to the semigroup $\mathcal{P}_{n}$, of all partial maps on $X_{n}=\{1,2,\ldots,n\}$, and show that the classical decomposition of permutations into disjoint cycles can be extended to elements of $\mathcal{P}_{n}$ by means of path-cycles. The device is used to obtain information about generating sets for the semigroup $\mathcal{P}_{n}\setminus\mathcal{S}_{n}$, of all singular partial maps of $X_{n}$. Moreover, by analogy with [3], we give a definition for the ($m,r$)-rank of $\mathcal{P}_{n}\setminus\mathcal{S}_{n}$ and show that it is $\frac{n(n+1)}{2}$.

Ключевые слова: path-cycle, $(m,r)$-path-cycle, $m$-path, generating set, $(m,r)$-rank.

MSC: 20M20

Поступила в редакцию: 20.12.2015
Исправленный вариант: 03.04.2016

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024