RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2017, том 24, выпуск 1, страницы 46–70 (Mi adm618)

RESEARCH ARTICLE

$(G,\phi)$-crossed product on $(G,\phi)$-quasiassociative algebras

Helena Albuquerque, Elisabete Barreiro, José M. Sánchez-Delgado

CMUC, Departamento de Matemática, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal

Аннотация: The notions of $(G,\phi)$-crossed product and quasicrossed system are introduced in the setting of $(G,\phi)$-quasiassociative algebras, i.e., algebras endowed with a grading by a group $G$, satisfying a “quasiassociative” law. It is presented two equivalence relations, one for quasicrossed systems and another for $(G,\phi)$-crossed products. Also the notion of graded-bimodule in order to study simple $(G,\phi)$-crossed products is studied.

Ключевые слова: graded quasialgebras, quasicrossed product, group algebras, twisted group algebras.

MSC: 17D99, 16S35

Поступила в редакцию: 17.08.2016
Исправленный вариант: 12.10.2016

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024