RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2012, том 13, выпуск 1, страницы 18–25 (Mi adm62)

RESEARCH ARTICLE

On $S$-quasinormally embedded subgroups of finite groups

Kh. A. Al-Sharoa, Olga Shemetkovab, Xiaolan Yic

a Al al-Bayt University, St. Al-Zohoor 5–3, Mafraq 25113, Jordan
b Russian Economic University named after G. V. Plekhanov, Stremyanny Per., 36, 117997 Moscow, Russia
c Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China

Аннотация: Let $G$ be a finite group. A subgroup $A$ is called: 1) $S$-quasinormal in $G$ if $A$ is permutable with all Sylow subgroups in $G$ 2) $S$-quasinormally embedded in $G$ if every Sylow subgroup of $A$ is a Sylow subgroup of some $S$-quasinormal subgroup of $G$. Let $B_{seG}$ be the subgroup generated by all the subgroups of $B$ which are $S$-quasinormally embedded in $G$. A subgroup $B$ is called $SE$-supplemented in $G$ if there exists a subgroup $T$ such that $G=BT$ and $B\cap T\le B_{seG}$. The main result of the paper is the following.
Theorem. Let $H$ be a normal subgroup in $G$, and $p$ a prime divisor of $|H|$ such that $(p-1,|H|)=1$. Let $P$ be a Sylow $p$-subgroup in $H$. Assume that all maximal subgroups in $P$ are $SE$-supplemented in $G$. Then $H$ is $p$-nilpotent and all its $G$-chief $p$-factors are cyclic.

Ключевые слова: Finite group, $p$-nilpotent, $S$-quasinormal subgroup.

MSC: 20D10, 20D20, 20D25

Поступила в редакцию: 31.01.2012
Принята в печать: 31.01.2012

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024