RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2017, том 24, выпуск 1, страницы 169–180 (Mi adm625)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

Jacobsthal-Lucas series and their applications

Mykola Pratsiovytyi, Dmitriy Karvatsky

National Dragomanov Pedagogical University, vul. Pirogova 9, Kyiv, Ukraine

Аннотация: In this paper we study the properties of positive series such that its terms are reciprocals of the elements of Jacobsthal-Lucas sequence ($J_{n+2}=2J_{n+1}+J_n$, $J_1=2$, $J_2=1$). In particular, we consider the properties of the set of incomplete sums as well as their applications. We prove that the set of incomplete sums of this series is a nowhere dense set of positive Lebesgue measure. Also we study singular random variables of Cantor type related to Jacobsthal-Lucas sequence.

Ключевые слова: Jacobsthal-Lucas sequence, the set of incomplete sums, singular random variable, Hausdorff-Besicovitch dimension.

MSC: 11B83, 11B39, 60G50

Поступила в редакцию: 12.09.2016
Исправленный вариант: 29.03.2017

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024