RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2012, том 13, выпуск 1, страницы 26–42 (Mi adm63)

Эта публикация цитируется в 6 статьях

RESEARCH ARTICLE

Algebra in superextensions of semilattices

Taras Banakhab, Volodymyr Gavrylkivc

a Ivan Franko National University of Lviv, Ukraine
b Jan Kochanowski University, Kielce, Poland
c Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

Аннотация: Given a semilattice $X$ we study the algebraic properties of the semigroup $\upsilon(X)$ of upfamilies on $X$. The semigroup $\upsilon(X)$ contains the Stone–Čech extension $\beta(X)$, the superextension $\lambda(X)$, and the space of filters $\varphi(X)$ on $X$ as closed subsemigroups. We prove that $\upsilon(X)$ is a semilattice iff $\lambda(X)$ is a semilattice iff $\varphi(X)$ is a semilattice iff the semilattice $X$ is finite and linearly ordered. We prove that the semigroup $\beta(X)$ is a band if and only if $X$ has no infinite antichains, and the semigroup $\lambda(X)$ is commutative if and only if $X$ is a bush with finite branches.

Ключевые слова: semilattice, band, commutative semigroup, the space of upfamilies, the space of filters, the space of maximal linked systems, superextension.

MSC: 06A12, 20M10

Поступила в редакцию: 05.10.2011
Исправленный вариант: 19.01.2012

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024