RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2017, том 24, выпуск 2, страницы 320–330 (Mi adm637)

RESEARCH ARTICLE

Total global neighbourhood domination

S. V. Siva Rama Rajuab, I. H. Nagaraja Raoc

a Academic Support Department, Abu Dhabi Polytechnic, Al Ain, United Arab Emirates
b Department of Information Technology, Ibra college of Technology, Ibra, Sultanate of Oman
c Laxmikantham Institute of Advanced Studies, G.V.P. College of Engineering, Visakhapatnam, India

Аннотация: A subset $D$ of the vertex set of a connected graph $G$ is called a total global neighbourhood dominating set ($\mathrm{tgnd}$-set) of $G$ if and only if $D$ is a total dominating set of $G$ as well as $G^{N}$, where $G^{N}$ is the neighbourhood graph of $G$. The total global neighbourhood domination number ($\mathrm{tgnd}$-number) is the minimum cardinality of a total global neighbourhood dominating set of $G$ and is denoted by $\gamma_{\mathrm{tgn}}(G)$. In this paper sharp bounds for $\gamma_{\mathrm{tgn}}$ are obtained. Exact values of this number for paths and cycles are presented as well. The characterization result for a subset of the vertex set of $G$ to be a total global neighbourhood dominating set for $G$ is given and also characterized the graphs of order $n(\geq 3)$ having $\mathrm{tgnd}$-numbers $2, n - 1, n$.

Ключевые слова: semi complete graph, total dominating set, connected dominating set.

MSC: 05C69

Поступила в редакцию: 19.10.2015
Исправленный вариант: 06.11.2015

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024