RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2018, том 25, выпуск 1, страницы 73–97 (Mi adm645)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

Gram matrices and Stirling numbers of a class of diagram algebras, I

N. Karimilla Bi, M. Parvathi

Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chepauk, Chennai 600 005, Tamilnadu, India

Аннотация: In this paper, we introduce Gram matrices for the signed partition algebras, the algebra of $\mathbb{Z}_2$-relations and the partition algebras. The nondegeneracy and symmetic nature of these Gram matrices are establised. Also, $(s_1, s_2, r_1, r_2, p_1, p_2)$-Stirling numbers of the second kind for the signed partition algebras, the algebra of $\mathbb{Z}_2$-relations are introduced and their identities are established. Stirling numbers of the second kind for the partition algebras are introduced and their identities are established.

MSC: 16Z05

Поступила в редакцию: 22.09.2015
Исправленный вариант: 16.03.2018

Язык публикации: английский



© МИАН, 2024